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 This writeup shows how the EXAFS and other data analysis programs are 
organized and the sequences in which they can be used.  There are five main groups of 
programs, MCA, XRF, EXAFS front-end, EXAFS Fourier and general-purpose 2-column 
data manipulation.  Two-column files are used for data which is expressed as a quantity 
plotted against some other quantity and consist of two columns of ASCII numbers with 
no header.  Such files are generated by most of the programs. 
 
 The functions of the five groups are: 
MCA: Reads and manipulates MCA data from the detector 

XRF: XRF elemental mapping and the analysis thereof 

EXAFS front-end: 
 EXAFS data from raw scans up through unfiltered ‘wiggly-part’ data. 

EXAFS Fourier: 
 Fourier transformation and handling of resulting files including non-linear least- 
 squares fitting. 

General purpose e-column data manipulation: 
 Editing of XY data, plotting, weighted sums or products 
 

Files are kept track of through the mechanism of file extensions.  A list is given at 
the end of this note.  Most programs are set up so that their file-selection dialogs default 
to an extension appropriate to the type of file.  Thus, the k-space&background-remove 
program produces a .b file by default, and the FT program takes .b’s as input. 
 
 The first set of programs I’ll consider is the MCA set.  This consists of the MCA 
utility on the data-taking machine and the MCA reader on the analysis computer.  The 
MCA reader lets you see the spectrum from one or a sum of detectors and puts out a 2-
column file for the spectrum.  This simple dataflow is shown in Figure 1. 
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Figure 1.  Dataflow for the MCA programs.  The various types of objects shown are as 
follows and are the same for subsequent Figures:  
Rectangular box: Program 
Dashed line:  Separates data-taking from data analysis programs 
Rounded box:  Results.   Within this box, we have: 
 Text  Results or files 
 Italic text Most important files or results 
 (ext)  File extensions 
 
 
 The dataflow for the XRF programs (Figure 2) is not quite so simple.  The 
fluorescence-mapping program on the data-taking machine produces a file which 
contains the maps for all SCA’s.  It’s essentially a three-dimensional array (SCA, x,y) 
with a header.  This can be looked at with the display program.  The display program is 
the main means of interacting with these files.  However, you can also do difference 
maps with another program.  These maps have the same format as the normal map files, 
so they can go into the XY display program.  Further, there is some processing, such as 
making cross-correlation maps, which can be done with the display program.  The results 
of such processing again look enough like raw data to be readable by the same program, 
which is why the Figure shows a loop.  The end results will be images of maps in single 
elements, tricolor maps in three elements, scatterplots or correlation images. 
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Figure 2.  Dataflow for the XRF program.  Note that the Difference Map program takes 
two .xrf files as input.  The dashed line coming from the .cor correlation file is meant 
to indicate that this is a minor path.  Not shown: Ratio map, which works just like 
Difference map. 
 
 
 Next, we have the front end of the EXAFS process, as shown in Figure 3.  This is 
considerably more complex.  There are two main types of files, full-information (dat) 
and 2-column.  The full-information files have all the information from the beamline, 
including counts and count times for all counters.  This information is needed for 
operations such as summing and deadtime correction, but is removed when going to the 
next stage of analysis.  Thus, if the spectrum was acquired in transmission mode, the full-
information file will have both the I0 and It counters, but the rest of the data-analysis 
programs require only ln(I0/It).  Thus, the principal output of the EXAFS Data Editor is 
a two-column file with the energy and ln(I0/It) as the columns.  These two-column files 
are denoted by a .r extension. 
 
 The raw signal file then has to be converted to an EXAFS (k vs. knχ(k)) 2-column 
file.  This involves subtracting the pre-edge, choosing an E0 value, running a spline 
through the post-edge, and subtracting and dividing by that spline.  All these steps are 
done using the k-space&background removal program.  The resulting files have a .b 
extension.  This program can also be used to produce files (.t) suitable for XANES 
analysis.   
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Figure 3.  Dataflow for the first part of EXAFS/XANES analysis.  This Figure covers 
steps up to but not including Fourier manipulations. 
 
 
 The .b and .t files can be used for ‘fingerprint’ or ‘physics-free’ analysis by linear 
fitting or PCA.  All fitting programs, including PCA, produce best-fit (fit) and 
residuals (res) files.  In addition, the PCA program produces files for the abstract 
components (cmp) and any target-transformed models which the user may have tested 
(trg).  All these files are two-column, with E or k as the abscissa. 
 

Analysis can also proceed along the Fourier track (Figure 4) in which one or more 
shells are extracted by Fourier filtering then fitted to amplitudes and phases derived from 
previously-extracted shells.  The FT program can save out filter-function files so they can 
be re-used, thus assuring consistent filtering between different samples or between 
samples and models.  Also, FT can save the filter residual, which is the input signal 
minus the filtered: 2b = b-f.  This residual can be put back into the FT and re-filtered to 
see higher shells.  The Multishell fit program uses filtered or unfiltered data (usually 
filtered) and model amplitude and phase files, and produces the coordination numbers, 
distances, etc.  These parameters can be saved into a file (fpr), which looks like a 
configuration file, and can be read back into the fit program.  This program also produces 
the usual fit and res files.
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Figure 4.  Dataflow for Fourier (shell) analysis.  The FT program can re-use the filter 
residuals (2b) as input and the filter functions (flt) for filtering another file.  The fitting 
program uses amplitudes and phases which usually come from EXAFS (b) files other 
than the one being analyzed. 
 
 
 The final group of programs consists of those which deal with two-column files in 
a general, non-specialized way.  Presently, this group consists of the plot-add-multiply 



and 2-column editor programs.  There is no Figure for these because there is no set path 
by which they are used. 

The plot-add-multiply program has two main functions.  One of these is to plot a 
set of files on a common scale.  This is useful for comparing files, plotting the real and 
imaginary parts of the FT along with the magnitude, etc.  The full set of graph controls is 
available and the graph can be saved as a bitmap.  The second function is that it does 
weighted sums or products.  Each file is viewed as a tabulation of a function y=y(x), and 
the program lets you make Y=Σwiyi(x) or Y=Πyi(x)pi, interpolating and pruning as 
necessary to put all the values on a common grid.  This is handy for tasks such as 
adjusting phase shifts for semi-empirical modeling and making linear combinations of 
models to simulate spectra. 

The 2-column editor works on one file at a time, but has more functions than 
plot-add-multiply. It lets you cut a piece out of the middle or cut off the ends of a set of 
data, resample by interpolation, sort, and do arithmetic on the ordinate or abscissa.  The 
arithmetic operations supported are:  add a constant, multiply by a constant, take the log, 
take the exponential, get the coordinates of a cursor, and use  cursor coordinates in any of 
the above operations.  The program also has functions for integration, differentiation and 
removal of a straight-line background. 

Now I will describe some examples of how these programs can be used together 
for data analysis tasks.  First, consider a signal-vs-E spectrum with a strongly curved 
post-edge background, and suppose you want to normalize it for XANES applications.  A 
quick-and-dirty solution can often be done with 2-column editor.  First, subtract off the 
pre-edge background.  Then, take the log of the data.  Fit a linear background through the 
part of the post-edge past the XANES region.  Now remove that background and take the 
exponential.  This set of steps is equivalent to dividing by an exponential curve.  The fit 
to the curved post-edge is usually good enough for XANES work. 

For a next example, suppose you need a model for a Cu central atom surrounded 
by Ti scatterers (Cu->Ti) in a metallic environment.  There’s no suitable intermetallic in 
this system.   You might think to use FEFF to get ab-initio values, but that doesn’t take 
into account the various distortions and artifacts of data reduction.  A better way is to run 
FEFF twice, once for Cu in Cu metal (Cu->Cu) and once with a hypothetical structure 
consisting of Cu surrounded by Ti.  You can generate the FEFF input file for this by 
starting with a file made by ATOMS for Ti metal and editing it to change the central 
atom to Cu.  Now, create the phase and amplitude files for these two theoretical models, 
in the first shell.  Call them cucuth.[ap] and cutith.[ap], where the [ap] 
means either a or p.  Also, get phase and amplitude files for Cu foil (cufoil.[ap]).  Now 
do the following manipulations with plot-add-multiply: 

cuti_semi.a = cufoil.a*(cutith.a/cucuth.a) 
cuti_semi.p = cufoil.p+cutith.p-cucuth.p 

The product and ratio can be done as a weighted product with powers of 1,1 and –1. 
The resulting files will be appropriate for Cu looking at Ti. at the distance and 
coordination number specified when generating cutith.[ap].  The E0 will be 
approximately correct and all Fourier and spline-fit artifacts will be taken into account.  
These files are ready to be used in Multishell fit.  Of course, this method must be used 
with eyes open, since it assumes things about transferability.  For instance, you wouldn’t 



use it to go from Cu->O in copper acetate to Fe->Mo in an intermetallic because the 
chemistry of the site is very different and the atomic numbers far apart. 
 The Stern ratio method for evaluating Debye-Waller effects is another example.  
In this method, you plot the ratio of two amplitudes vs. k2 on semilog axes.  How do you 
get the abscissa to be the square?  First, use plot-add-multiply to take the ratio (A1

1*A2
-1).  

Next, take this ratio file into 2-column editor and do the following sequence: x->ln(x),x-
>2x,x->exp(x).  This turns x into x2.  Now, bring it back into plot-add-multiply and plot 
semilog or do y->ln(y) in plot-add-multiply and plot on a linear scale.  I don’t have a 
linear fit routine which returns the fit parameters, but you can use any data-graphing 
program for that, even Excel. 
 As a final example, consider the case of a sample with a weak second shell.  This 
is common in natural materials in which the disorder is significant.  When you take the 
FT, you often find a big first shell, and some hint of a second shell, but it’s not really 
well-resolved from the first shell.  One way to deal with this is as follows: 
 
1. Use FT to get the first shell and save the filter residuals.  This contains the 

second-shell information. 

2. Look at the filter residual file with 2-column editor.  You will probably find that 
 the recognizable signal extends up to a lower k than the first-shell signal does. 
 Chop the file so that the noisiest parts are gone. 

2. Put this back into FT and see if there’s a recognizable second shell peeping out. 
 
Alternatively, if you have a model for the first shell, use Multishell fit to fit the first shell, 
then use plot-add-multiply to subtract the fitted first shell from the unfiltered data.  
Proceed as in steps 2 and 3 above.  This procedure makes sure that you’re only 
subtracting off something that really belongs to the first shell.  This method can be used 
iteratively to split poorly-resolved shells such as the first and second of Fe metal. 
 
 To wrap up, I’ll go through a highly-condensed example of what a typical set of 
data acquisition and analysis might be like.  Consider a soil sample which contains a 
metal, say Zn, in some unknown form or set of forms.  You want to know how many 
different forms there might be and what they might be.  First, use the MCA Utility to get 
an idea of what elements are present.  Drive around the sample a bit.  If you find an 
interesting spectrum, save it out so it can be read later.  Next, map the sample using XY 
Mapping.  You will probably find interesting patterns of correlation, for instance that Zn 
is found where Mn or Fe are.  Use this map to pick out spots for EXAFS.  Tiny hotspots 
may be small grains of minerals which represent only a small fraction of the whole, so 
you may want to avoid being tempted into looking only at the strongest spots. 
 Now, take EXAFS data on each of several spots.  The scans will be named things 
like spot1001.dat, spot1002.dat... and so forth.  Use the EXAFS Data Editor 
to clean up the files, discard the bad ones, do deadtime correction, and add up the good 
ones.  Do the deadtime correction before adding up.  Now, you have summed scans for 
each spot, spot1.dat, spot2.dat...etc.  Apply k-space&background remove to 
put it into k-space according to your favorite prescription for E0 selection and background 
removal.  Do it consistently.  Consistency of methods is key in EXAFS analysis, 



especially if you’re doing PCA.  You can now compare visually with references or use 
PCA on spot1.b, spot2.b, etc. to see how many independent components there 
might be.  Use the target transformation to test references for plausibility.  Alternatively, 
you can use the linear least-squares program to do fits and see what species are 
plausible.  If you find a species that doesn’t match your database, then you can dig deeper 
using Fourier methods and your deep knowledge of Zn minerology (sorry, software can’t 
do everything!) to figure out what’s there. 
 
 One last hint:  Make up a readme.txt file as you go during analysis so you can 
remember what you did, what you did it to, and why you did it.  It’s a lifesaver when you 
go back months or years later. 
 
 Finally, here’s a list of file extensions: 
mca  MCA spectrum 
xrf  XRF element map 
cor  Cross-correlation map from XRF 
bmp,jpg Bitmaps from programs which produce graphics 
dat  Raw, multicolumn EXAFS 
fpr  Fit parameters from Multishell fit 
------- Files past this point are all 2-column and may be input to any 2-column program--- 
r  2-column signal-vs. E EXAFS (raw, not background subtracted) 
t  Background-subtracted, E0-shifted E-space 
b  EXAFS (knχ(k) vs. k) 
fit  Fitted function from any fit program 
res  Residual from any fit program, (input)-.fit 
cmp  PCA abstract component 
trg  PCA target transformed reference 
m  FT magnitude 
x  FT real part 
y  FT imaginary part: m = sqrt(x2+y2) 
flt  Filter function (R abscissa) 
f  Filtered, back-transform: f = FT-1{flt(r)*(x(r)+iy(r)} 
a  Back-transform amplitude 
p  Back-transform phase: f(k) = a(k) sin(p(k)) 
2b  Filter residual: 2b = b-f 
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